

# Hydraulic Motors M5\* Series

Denison Vane Technology, fixed displacement



GS Global Resources • 1-800-261-8735 • gsglobalresources.com 926 Perkins Drive, Mukwonago, WI 53149

© GS GLOBAL REOURCES, INC. ALL RIGHTS RESERVED.

# Hydraulic Motors, Fixed **M5, Denison Vane Motors**

| General Information   | Introduction and product key features                 | 3        |
|-----------------------|-------------------------------------------------------|----------|
|                       | Description of the M5 motors                          |          |
|                       |                                                       | 4 10 5   |
| Main Technical Data   | Maximum speed and pressure                            | 6        |
|                       | Displacement and specific torque                      |          |
|                       | Installation and connection                           |          |
|                       |                                                       | ,        |
| Ordering Code         | M5A motor                                             |          |
| -                     | M5AS motor                                            |          |
|                       | M5ASF motor                                           | 10       |
|                       | M5AF motor                                            | 11       |
|                       | M5B and M5BS motor                                    | 12       |
|                       | M5BF motor                                            | 13       |
| Technical Date        |                                                       |          |
| Technical Data        | Max. ratings M5A - M5AS - M5ASF motors                |          |
|                       | Max. ratings M5AF motor                               |          |
|                       | Max. ratings M5B - M5BS - M5BF motors                 |          |
|                       | Flow and torque data M5A - M5AS - M5ASF - M5AF motors |          |
|                       | Flow and torque data M5B - M5BS - M5BF motors         |          |
|                       | Starting performances                                 |          |
|                       | Permissible shaft loads                               |          |
|                       | Noise level charts                                    | 20       |
| Circuit Design        | Graphical symbols                                     | 21       |
| -                     | Motor selection example                               | 22       |
|                       | Hydraulic fluids, types of seals, motor installation  |          |
|                       | Minimum replenishment pressure during deceleration    |          |
|                       | Reverse cycle for fan drives                          | 24       |
|                       | Connection of several motors in the same circuit      | 24       |
|                       | Electrohydraulic valves                               | 25 to 26 |
|                       | Start-up istructions                                  | 26       |
| Dimension Development |                                                       |          |
| Dimension Drawings    | M5A and M5AS motor with rear ports                    |          |
|                       | M5A and M5AS motors with opposite ports               | 28       |
|                       | M5A and M5AS motors with side ports                   |          |
|                       | M5A and M5AS motors with reverse valve option         |          |
|                       | M5ASF motor with opposite ports                       |          |
|                       | M5ASF motor with side ports                           |          |
|                       | M5ASF motor with reverse valve option                 |          |
|                       | M5AF motor                                            |          |
|                       | M5B and M5BS motors                                   |          |
|                       | M5B and M5BS motors with reverse valve option         |          |
|                       | M5BF motor                                            |          |
|                       | M5BF motor with reverse valve option                  | 38       |
|                       | Warning                                               | 39       |
|                       | ······································                | 30       |

# The M5 hydraulic motors

### Introduction

We are very pleased to present you with the M5 hydraulic motors of Parker Hannifin, a range of high quality products designed for the heavy duty applications, gathering the latest developments of our reference "Denison Vane Technology".

Not only are these M5 motors performing very well in many various applications such as mixers, shredders, compressor and generator drives, but they do it in silence and for a long service life. Dedicated construction types have been created for fan drives. They offer a very compact solution and, with their built-in valves, they turn into complete hydraulic cooling units, allowing optimal performances, time and money savings for our OEM customers and end users.

This catalogue describes the 3 existing sizes of M5 hydraulic vane motors in their various standard construction types. Equipment manufacturers who may request additional options or have specific requests, are welcome to contact us for a tailored solution study.



### **Key features**

#### High performances

The M5 motors have been designed especially for severe duty applications which require long lasting high pressure, high speed capabilities even with low fluid lubricity. Their performances remain stable over time.

#### Long lifetime

The fully pressure balanced concept increases the motor lifetime over its full speed range. Double lip vanes reduce the sensitivity to fluid pollution. The bearing capabilities are totally dedicated to the external loads on the shaft ends, whatever the operating pressures are.

#### Low noise

Simply silent! The Denison Vane Technology allows a very low noise level, whatever the speed.

#### Low torque ripple

Thanks to their 12 vanes, advanced cam ring profile, two torque cycles per revolution and low internal dead volumes, the M5 motors exhibit a very low torque ripple (typical ± 1,5%), even at low speeds.

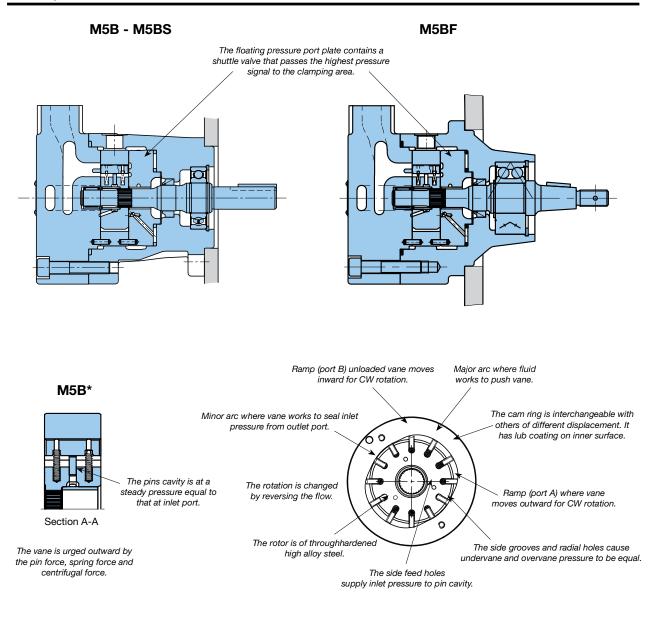
#### Versatility and compactness


Up to 7 different displacements for the same motor installation size.

M5 fan drive motors can be mounted directly on the radiator support with a very short overall length. The fan blade can be directly installed on the motor tapered shaft end.

#### Built-in valves

A selection of well proven Parker electro-hydraulic valves are adding even more functionalities. Being directly integrated into the motor they offer the best technical performances and the lowest cost of installation.






### Operation

- The motor shaft is driven by the rotor. The vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has
  two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are
  balanced diametrically.
- Light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop starting torque. The springs are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through opening in the side plates at the ramps. Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B torques the rotor counter-clockwise.
- The rotor is axially separated from the sideplate surface by the fluid film. The front pressure port plate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the port plate causes clamping pressure in Port A or B, whichever is the highest.
- Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. The cast iron port plate and the end cap are chemically etched to offer a fine crystalline surface allowing a better lubrication at start-up.





### Operation

- The motor shaft is driven by the rotor. The vanes, closely fitted into the rotor slots move radially to seal against the cam ring. The ring has two major and two minor radial sections joined by transitional sections called ramps. These contours and the pressures exposed to them are balanced diametrically.
- Hydraulic pins and light springs urge the vanes radially against the cam contour assuring a seal at zero speed so that the motor can develop
  starting torque. The springs and pins are assisted by centrifugal force at higher speeds. Radial grooves and holes through the vanes equalize
  radial hydraulic forces on the vanes at all times. Fluid enters and leaves the motor cartridge through opening in the side plates at the ramps.
  Each motor port connects to two diametrically opposed ramps. Pressurized fluid entering at Port A torques the rotor clockwise. The rotor
  transports it to the ramp openings which connect to Port B from which it returns to the low pressure side of the system. Pressure at Port B
  torques the rotor counter-clockwise.
- The rotor is axially separated from the sideplate surface by the fluid film. The front pressure port plate is clamped against the cam ring by the pressure, maintains optimum clearance as dimensions change with temperature and pressure. A 3-way shuttle valve in the port plate causes clamping pressure in Port A or B, whichever is the highest.
- Materials are chosen for long life efficiency. The vanes, rotor and cam ring are made out of hardened high alloy steels. The cast iron port plate and the end cap are chemically etched to offer a fine crystalline surface allowing a better lubrication at start-up.



|                   |        |                    |         | Maximum           | n pressure  |
|-------------------|--------|--------------------|---------|-------------------|-------------|
| Marial of markers | 0      | Maximu             | m speed |                   | HF-2 fluids |
| Model of motor    | Series | Int.               | Cont.   | Int. (6 s/min)    | Cont.       |
|                   |        | rpm                | rpm     | bar               | bar         |
|                   | 006    | 6000               | 5000    |                   |             |
| M5A               | 010    | 6000               | 5000    |                   |             |
|                   | 012    | 4500               | 3800    |                   |             |
| M5AS              | 016    | 4500               | 3600    | 300 <sup>2)</sup> | 280         |
|                   | 018    | 4000               | 3300    |                   |             |
| M5ASF             | 023    | 3000               | 2500    |                   |             |
|                   | 025    | 3000               | 2500    |                   |             |
|                   | 006    | 6000               | 5000    |                   |             |
|                   | 010    | 0000               | 5000    |                   |             |
|                   | 012    | 4500               | 3800    | 300               | 300         |
| M5AF              | 016    | 4500               | 3800    |                   |             |
|                   | 018    | 4000               | 3300    |                   |             |
|                   | 023    | 3000               | 2500    | 280               | 280         |
|                   | 025    | 3000               | 2500    | 200               | 200         |
|                   | 012    | 6000               | 4000    |                   |             |
| M5B               | 018    | 0000               | 4000    |                   |             |
| M5BS              | 023    |                    |         | 320               | 290         |
| GOCINI            | 028    | 4000               | 3000    |                   |             |
| M5BF              | 036    |                    |         |                   |             |
|                   | 045    | 3000 <sup>1)</sup> | 2500    | 280               | 260         |

### Max. speed and pressure

<sup>1)</sup> Bi-rotational motor only. Others = 2500 rpm <sup>2)</sup> Fo

<sup>2)</sup> For fan drive application only. Others = 280 bar max

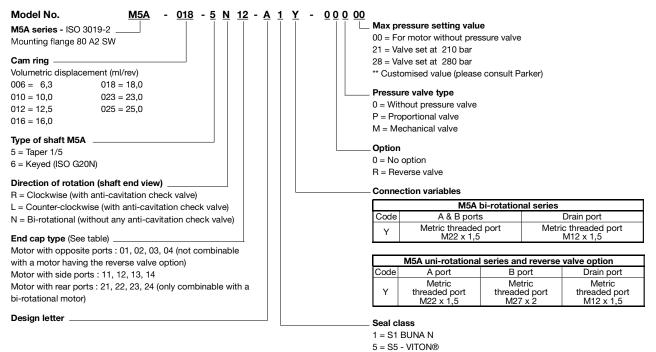
### Displacement and specific torque

| Series | Theoretical<br>Displacement Vi | Theoretical torque | Theoretical power at 100 rpm |       | al data<br>m - 280 bar |                   | (M5AF only)<br>m - 300 bar |
|--------|--------------------------------|--------------------|------------------------------|-------|------------------------|-------------------|----------------------------|
|        | cm³/rev                        | N.m/bar            | kW/bar                       | N.m   | kW                     | N.m               | kW                         |
|        | 6,3                            | 0,100              | 0,0011                       | 24,4  | 5,1                    | 26,1              | 5,5                        |
| M5A    | 10,0                           | 0,159              | 0,0017                       | 40,8  | 8,6                    | 43,7              | 9,2                        |
| M5AS   | 12,5                           | 0,199              | 0,0021                       | 52,0  | 10,9                   | 55,7              | 11,7                       |
|        | 16,0                           | 0,255              | 0,0027                       | 67,6  | 14,2                   | 71,4              | 15,2                       |
| M5ASF  | 18,0                           | 0,286              | 0,0030                       | 75,8  | 15,9                   | 81,2              | 17,0                       |
| M5AF   | 23,0                           | 0,366              | 0,0038                       | 98,4  | 20,4                   | N/A <sup>1)</sup> | N/A <sup>1)</sup>          |
|        | 25,0                           | 0,398              | 0,0042                       | 107,4 | 22,5                   | N/A <sup>1)</sup> | N/A <sup>1)</sup>          |

<sup>1)</sup> 023 - 025 = 280 bar max.

| Series | Theoretical<br>Displacement V <sub>i</sub> | Theoretical torque | Theoretical power at 100 rpm |                   | ıl data<br>n - 320 bar |
|--------|--------------------------------------------|--------------------|------------------------------|-------------------|------------------------|
|        | cm³/rev                                    | N.m/bar            | kW/bar                       | N.m               | kW                     |
|        | 12,0                                       | 0,191              | 0,0020                       | 50,6              | 10,6                   |
| M5B    | 18,0                                       | 0,286              | 0,0030                       | 81,2              | 17,0                   |
| M5BS   | 23,0                                       | 0,366              | 0,0038                       | 117,1             | 24,5                   |
| MOBO   | 28,0                                       | 0,446              | 0,0047                       | 132,1             | 27,7                   |
| M5BF   | 36,0                                       | 0,572              | 0,0060                       | 172,8             | 36,2                   |
|        | 45,0                                       | 0,716              | 0,0075                       | N/A <sup>1)</sup> | N/A <sup>1)</sup>      |

<sup>1)</sup> 045 = 280 bar max.




### Installation and connection

|                                                          | Mounting<br>flange                    | Shaft end                                              | Port A                                                                                               | Port B                                                                   | Drain port                                                                             |
|----------------------------------------------------------|---------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| M5A<br>Uni-rotational<br>M5A<br>with reverse<br>function | ISO 3019-2<br>80 A2 SW<br>2-bolts     | Keyed taper 1/5<br>Keyed ISO G20N                      | Threaded port :<br>- M22 x 1,5 - ISO 6149-1                                                          | Threaded port :<br>- M27 x 2 - ISO-6149-1                                | Threaded port :<br>- M12 x 1,5 - ISO-6149-1                                            |
| M5A<br>Bi-rotational                                     | pilot Ø 80                            |                                                        | Threaded port<br>- M22 x 1,5 -                                                                       |                                                                          | Threaded port :<br>- M12 x 1,5 - ISO-6149-1                                            |
| M5AS<br>Uni-rotational                                   |                                       | Keyed taper SAE B                                      | Threaded port :                                                                                      | Threaded port :                                                          | Threaded port :                                                                        |
| M5AS<br>with reverse<br>function                         | SAE A<br>J744<br>2-bolts              | Keyed SAE B                                            | - SAE 10 - (7/8"-14 UNF)<br>- 1/2" BSPP                                                              | - SAE 12 - (1.1/16"-12 UNF)<br>- 3/4" BSPP                               | - SAE 6 - (9/16"-18 UNF)<br>- 1/4" BSPP                                                |
| M5AS<br>Bi-rotational                                    | pilot Ø 82,55                         | Keyed taper 1/5<br>Keyed ISO G20N                      | Threaded por<br>- SAE 12 - (1.<br>- 3/4" BSPP                                                        | t :<br>1/16"-12 UNF)                                                     | Threaded port :<br>- SAE 6 - (9/16"-18 UNF)<br>- 1/4" BSPP                             |
| M5ASF<br>Uni-rotational                                  |                                       | Keved taper SAE B                                      | Threaded port :<br>- M22 x 1,5 - ISO 6149-1                                                          | Threaded port :<br>- M27 x 2 - ISO 6149-1                                | Threaded port :<br>- M12 x 1,5 - ISO 6149-1                                            |
| M5ASF<br>with reverse<br>function                        | Special<br>2-bolts<br>pilot Ø 100     | Keyed SAE B                                            | - SAE 10 - (7/8"-14 UNF)<br>- 1/2" BSPP                                                              | - SAE 12 - (1.1/16"-12 UNF)<br>- 3/4" BSPP                               | - SAE 6 - (9/16"-18 UNF)<br>- 1/4" BSPP                                                |
| M5ASF<br>Bi-rotational                                   | or<br>pilot Ø 101,6                   | Keyed taper 1/5<br>Keyed ISO G20N                      | Threaded por<br>- M22 x 1,5 -<br>- SAE 12 - (1.<br>- 3/4" BSPP                                       |                                                                          | Threaded port :<br>- M12 x 1,5 - ISO 6149-1<br>- SAE 6 - (9/16"-18 UNF)<br>- 1/4" BSPP |
| M5AF                                                     | Special<br>2 bolts<br>pilot Ø 120     | Keyed taper non SAE<br>Keyed non SAE                   | - SAE flange 3/4" - 4 b<br>- SAE flange 3/4" - 4 b<br>- Threaded port M22 x<br>- Threaded port SAE 1 | ( 1,5 - ISO 6149-1                                                       | Threaded port :<br>- M12 x 1,5 - ISO 6149-1<br>- SAE 6 - (9/16"-18 UNF)                |
| M5B                                                      | ISO 3019-2<br>100 A2 HW               |                                                        | - SAE flange 3/4" - 4 b<br>- Threaded port M27 x                                                     | oolts with metric thread<br>( 2 - ISO 6149-1                             |                                                                                        |
| M5B<br>with reverse<br>function                          | 100 B4 SW<br>2/4 bolts<br>pilot Ø 100 | Keyed cyl. SAE B                                       | Threaded port :<br>- M27 x 2 - ISO 6149-1                                                            | Threaded port :<br>- M33 x 2 - ISO 6149-1                                |                                                                                        |
| M5BS                                                     | SAE B<br>J744                         | Keyed cyl. ISO E25M<br>Splined SAE B<br>Splined SAE BB | - SAE flange 3/4" - 4 b<br>- SAE flange 3/4" - 4 b<br>- Threaded port M27 x<br>- Threaded port SAE 1 | ( 2 - ISO 6149-1                                                         | Threaded port :                                                                        |
| M5BS<br>with reverse<br>function                         | 2/4 bolts<br>pilot Ø 101,6            |                                                        | Threaded port:<br>- M27 x 2 - ISO 6149-1<br>- SAE 12 - (1.1/16"-12 UNF)                              | Threaded port :<br>- M33 x 2 - ISO 6149-1<br>- SAE 16 - (1.5/16"-16 UNF) | - M18 x 1,5 - ISO 6149-1<br>- SAE 6 - (9/16"-18 UNF)                                   |
| M5BF                                                     | Special<br>2 bolts                    | Keyed taper non SAE<br>Keyed cyl. SAE C                | - SAE flange 3/4" - 4 b<br>- SAE flange 3/4" - 4 b<br>- Threaded port M27 x<br>- Threaded port SAE 1 | (2 - ISO 6149-1                                                          |                                                                                        |
| M5BF<br>with reverse<br>function                         | pilot Ø 135                           | Keyed cyl. ISO G32N                                    | Threaded port :<br>- M27 x 2 - ISO 6149-1<br>- SAE 12 - (1.1/16"-12 UNF)                             | Threaded port :<br>- M33 x 2 - ISO 6149-1<br>- SAE 16 - (1.5/16"-16 UNF) |                                                                                        |



### M5A model description



| Motor with opposite ports<br>Shaft end view | A<br>DRAIN<br>ORAIN<br>B | DRAIN<br>A CONT                  | B<br>B<br>B<br>B<br>B<br>B<br>C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRAIN<br>B                                                                                           | DRAIN<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                          |
|---------------------------------------------|--------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Motor with side ports<br>Shaft end view     |                          | B<br>A<br>11                     | DRAIN<br>A B<br>B<br>DRAIN<br>A B<br>DRAIN<br>A B<br>DRAIN<br>B<br>DRAIN<br>A B<br>DRAIN<br>A B<br>DRAIN | DRAIN                                                                                                | B A 14                                                                                               |
| Motor with rear ports<br>Rear end view      |                          | DRAIN<br>DRAIN<br>DRAIN<br>DRAIN | DRAIN<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DRAIN<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | DRAIN<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O |

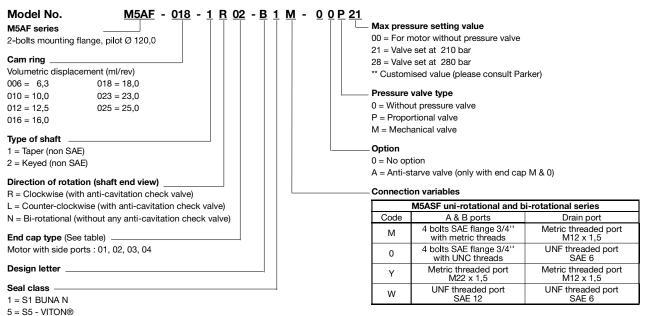


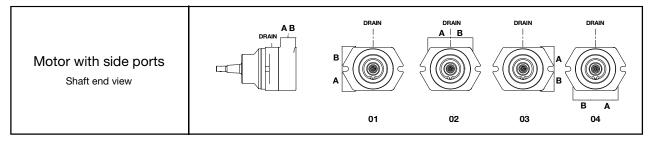
### M5AS model description

| Model No.         M5AS         -         018         -         1         R         12         -         A         1           M5AS series                                                                                                                                                    | <u>W</u> - <u>00 M 28</u> | 00 = F<br>21 = V<br>28 = V<br>** Cus<br>0 = Wi<br>P = Pr | ressure setting valu<br>or motor without pre-<br>alve set at 210 bar<br>alve set at 280 bar<br>tomised value (please<br>ure valve type<br>thout pressure valve<br>oportional valve<br>echanical valve | ssure valve | arker)                       |                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|------------------------------------------------------------------------|
| Type of shaft M5AS<br>1 = Taper (SAE B)<br>2 = Keyed (SAE B)<br>5 = Taper 1/5<br>6 = Keyed (ISO G20N)<br>Direction of rotation (shaft end view)                                                                                                                                              |                           | R = Re<br>- Conne                                        | o option<br>everse valve<br>ection variables<br>M5AS                                                                                                                                                  | bi-rotation | al series                    |                                                                        |
| R = Clockwise (with anti-cavitation check valve)         L = Counter-clockwise (with anti-cavitation check valve)         N = Bi-rotational (without any anti-cavitation check valve)                                                                                                        |                           | Code<br>W<br>Z                                           | A & B port<br>UNF threaded<br>SAE 12<br>3/4" BSPP thread                                                                                                                                              | port        |                              | Drain port<br>threaded port<br>SAE 6<br>SPP threaded port              |
| End cap type (See table)<br>Motor with opposite ports : 01, 02, 03, 04 (not combinable<br>with a motor having the reverse valve option)<br>Motor with side ports : 11, 12, 13, 14<br>Motor with rear ports : 21, 22, 23, 24 (only combinable with a<br>bi-rotational motor)<br>Design letter |                           | Code<br>W<br>Z                                           | UNF threaded port<br>SAE 10<br>1/2" BSPP<br>threaded port                                                                                                                                             | Вро         | ort<br>ded port<br>12<br>SPP | Drain port<br>UNF threaded port<br>SAE 6<br>1/4" BSPP<br>threaded port |
|                                                                                                                                                                                                                                                                                              |                           |                                                          | BUNA N<br>- VITON®                                                                                                                                                                                    |             |                              |                                                                        |

| Motor with opposite ports<br>Shaft end view | A<br>DRAIN<br>URAIN<br>B | DRAIN<br>A Discrete statements of the statement of the state | B<br>B<br>B<br>B<br>B<br>B<br>C2                                                                     |                                                                                                      | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor with side ports<br>Shaft end view     |                          | B<br>A<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DRAIN<br>A B<br>CONTRACTOR                                                                           | DRAIN<br>DRAIN<br>13                                                                                 | DRAIN<br>A<br>B<br>B<br>A<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Motor with rear ports<br>Rear end view      | DRAIN<br>A<br>B          | DRAIN<br>DRAIN<br>DRAIN<br>DRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DRAIN<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | DRAIN<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O | DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAIN<br>DRAINA |




### M5ASF model description


| M5ASF series         2-bolts mounting flange, pilot Ø 101,6         2-bolts mounting flange, pilot Ø 100         (metric ports version Y)         Cam ring         Volumetric displacement (ml/rev)         006 = 6,3       018 = 18,0         010 = 10,0       023 = 23,0         012 = 12,5       025 = 25,0         016 = 16,0         Type of shaft         1 = Taper (SAE B)         2 = Keyed (SAE B) | 00 = Fo<br>21 = Va<br>28 = Va<br>*** Cust<br><b>Pressu</b><br>0 = Wit<br>P = Pro<br>M = Ma<br>0 = No<br>R = Re |                                      | sure valve            | rker)          |                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------|----------------|--------------------------------------|
| 5 = Taper 1/5                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                      | - bi-rotatio          | nal carias     |                                      |
| 6 = Keyed (ISO G20N)                                                                                                                                                                                                                                                                                                                                                                                        | Code                                                                                                           | A & B port                           |                       |                | Drain port                           |
| Direction of rotation (shaft end view)                                                                                                                                                                                                                                                                                                                                                                      | Y                                                                                                              | Metric threaded<br>M22 x 1,5         | d port                | Metrie         | c threaded port<br>M12 x 1,5         |
| R = Clockwise (with anti-cavitation check valve)         L = Counter-clockwise (with anti-cavitation check valve)                                                                                                                                                                                                                                                                                           | w                                                                                                              | UNF threaded<br>SAE 12               | port                  | UNF            | threaded port<br>SAE 6               |
| N = Bi-rotational (without any anti-cavitation check valve)                                                                                                                                                                                                                                                                                                                                                 | Z                                                                                                              | 3/4" BSPP thread                     | ed port               | 1/4" BS        | PP threaded port                     |
| End cap type (See table)                                                                                                                                                                                                                                                                                                                                                                                    | <b></b>                                                                                                        | M5ASF uni-rotat                      | ional and r           | everse va      | lve option                           |
| Motor with opposite ports : 01, 02, 03, 04 (not combinable                                                                                                                                                                                                                                                                                                                                                  | Code                                                                                                           | A port                               | Вр                    | ort            | Drain port                           |
| with motor having the reverse valve option)<br>Motor with side ports : 11, 12, 13, 14                                                                                                                                                                                                                                                                                                                       | Y                                                                                                              | Metric<br>threaded port<br>M22 x 1,5 | Met<br>threade<br>M27 | d port         | Metric<br>threaded port<br>M12 x 1,5 |
| Design letter                                                                                                                                                                                                                                                                                                                                                                                               | w                                                                                                              | UNF threaded port<br>SAE 10          | UNF threa<br>SAE      | ded port<br>12 | UNF threaded port<br>SAE 6           |
| Seal class<br>1 = S1 BUNA N                                                                                                                                                                                                                                                                                                                                                                                 | Z                                                                                                              | 1/2" BSPP<br>threaded port           | 3/4" B<br>threade     |                | 1/4" BSPP<br>threaded port           |

| Motor with opposite ports<br>Shaft end view | B  | DRAIN<br>A CONTRACTOR | B<br>B<br>B<br>B<br>B<br>B<br>B<br>C2 | DRAIN<br>B<br>03     | A<br>A<br>O4                         |
|---------------------------------------------|----|-----------------------|---------------------------------------|----------------------|--------------------------------------|
| Motor with side ports<br>Shaft end view     | AB | B<br>A<br>11          | DRAIN<br>A B<br>CONTRACTOR            | DRAIN<br>DRAIN<br>13 | DRAIN<br>A<br>B<br>B<br>B<br>A<br>14 |



### M5AF model description

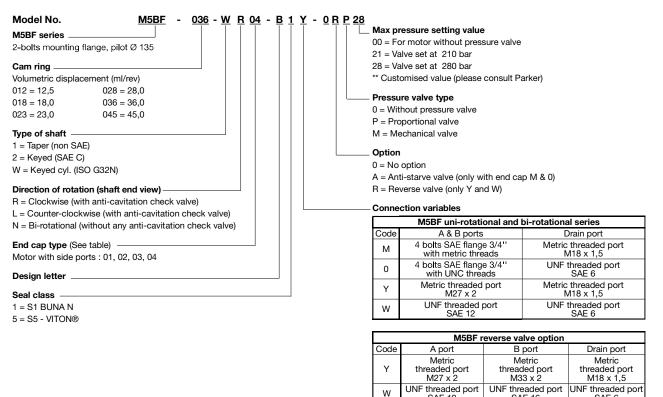


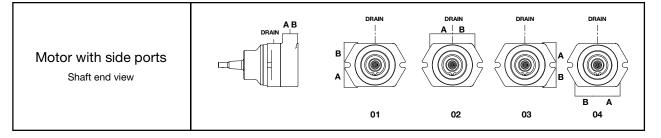




### M5B - M5BS model description

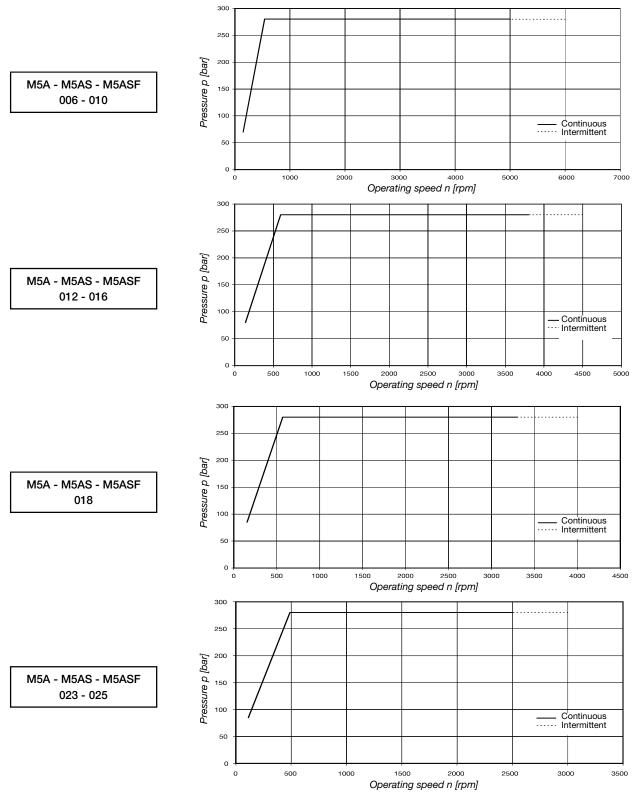
| Model No.       M5BS       - 036       - 1       R       02       - B       1         M5B series | M - 0 0 M 28 | 00 = Fc<br>21 = Va<br>28 = Va<br>** Cust<br><b>Pressu</b><br>0 = Wit<br>P = Prc<br>M = Ma<br><b>Option</b><br>0 = No<br>A = Ant<br>R = Re |                                                    | ith end can<br>d W)<br>tational ar | o M & 0)<br>nd bi-rotat | ional series<br>Drain port<br>threaded port<br>M18 x 1,5<br>threaded port<br>W18 x 1,5 |
|--------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------|-------------------------|----------------------------------------------------------------------------------------|
| End cap type (See table)<br>Motor with side ports : 01, 02, 03, 04                               |              |                                                                                                                                           |                                                    |                                    |                         |                                                                                        |
|                                                                                                  |              | Carla                                                                                                                                     | M5BS uni-rotati                                    |                                    |                         |                                                                                        |
| Design letter                                                                                    |              | Code<br>0                                                                                                                                 | A & B ports<br>4 bolts SAE flang<br>with UNC three | e 3/4''                            |                         | Drain port<br>threaded port<br>SAE 6                                                   |
| 1 = S1 BUNA N<br>5 = S5 - VITON®                                                                 |              | W                                                                                                                                         | UNF threaded<br>SAE 12                             | port                               | UNF                     | threaded port<br>SAE 6                                                                 |
|                                                                                                  |              |                                                                                                                                           |                                                    | 20                                 |                         |                                                                                        |
|                                                                                                  |              | Code                                                                                                                                      | M5B - M5E<br>A port                                | B n                                | <u> </u>                | Drain port                                                                             |
|                                                                                                  |              | Y                                                                                                                                         | Metric<br>threaded port<br>M27 x 2                 | 12                                 | tric<br>ed port         | Metric<br>threaded port<br>M18 x 1,5                                                   |
|                                                                                                  |              |                                                                                                                                           | M5B                                                | S reverse                          | option                  | ]                                                                                      |
|                                                                                                  |              | Code                                                                                                                                      | A port                                             | 1                                  | port                    | Drain port                                                                             |
|                                                                                                  |              | W                                                                                                                                         | UNF threaded port<br>SAE 12                        |                                    | eaded port<br>E 16      | UNF threaded port<br>SAE 6                                                             |





**SAE 12** 

**SAE 16** 

SAE 6

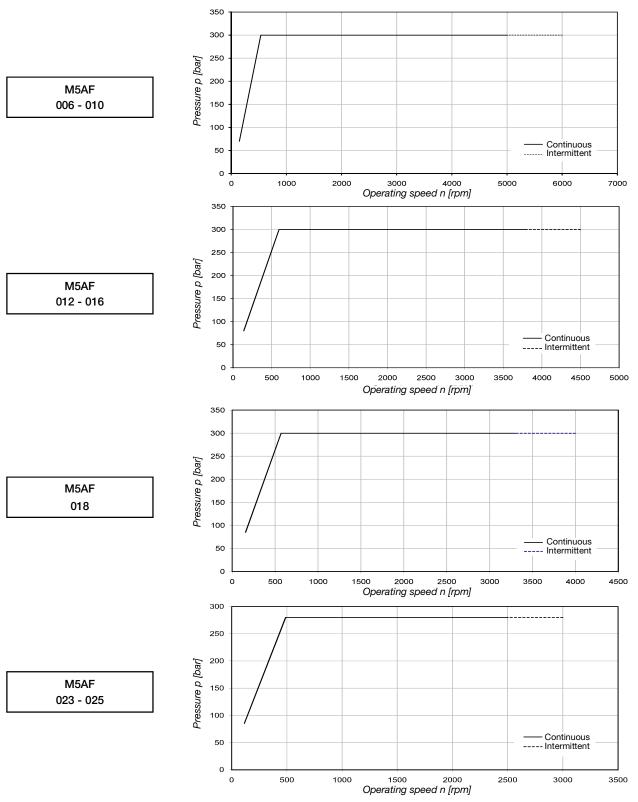

### M5BF model description







### Max. ratings M5A - M5AS - M5ASF

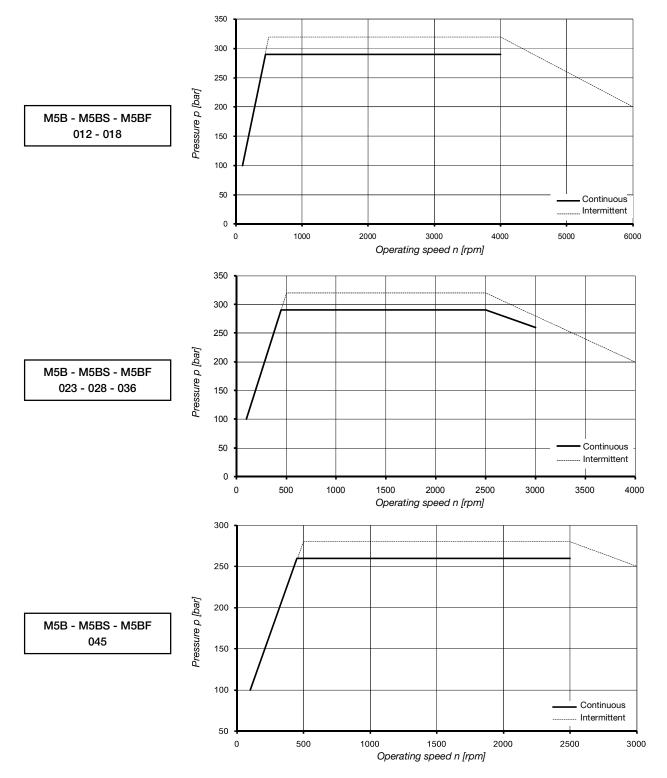



- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.

- For higher specifications or for operating speed under < 100 rpm, please consult Parker.



### Max. ratings M5AF



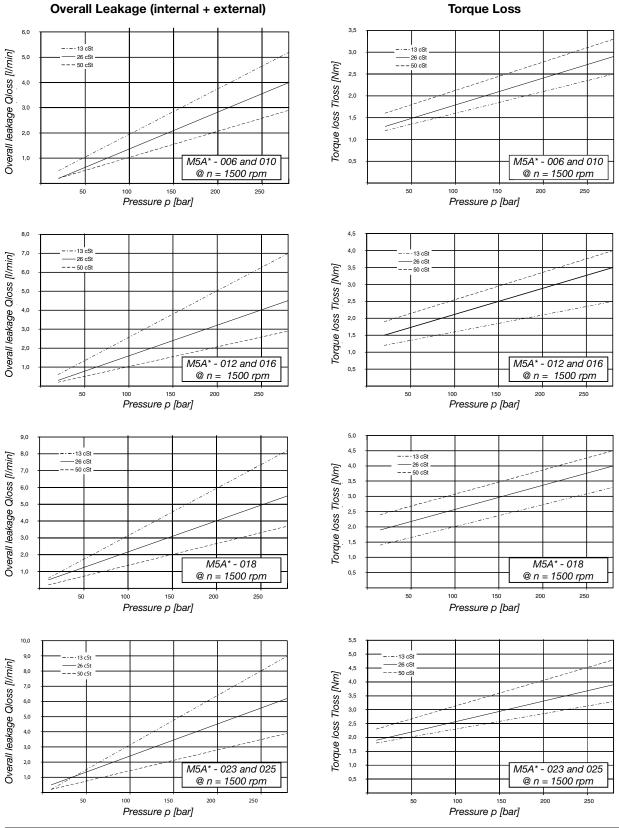

- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.

- For higher specifications or for operating speed under < 100 rpm, please consult Parker.

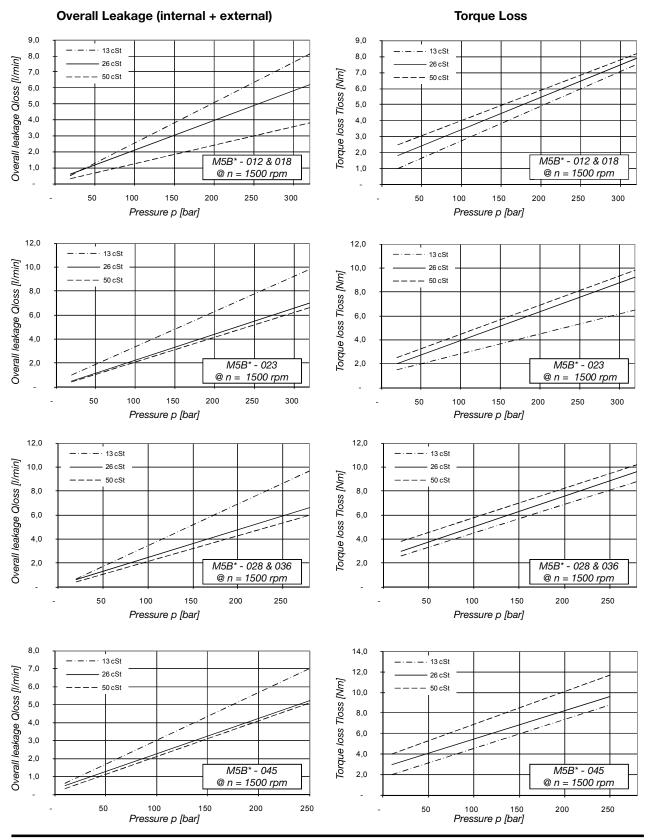


### Max. ratings M5B - M5BS - M5BF




- Running condition limits - Typical curves at 26 cSt @ 45° - For starting performances see page 19.

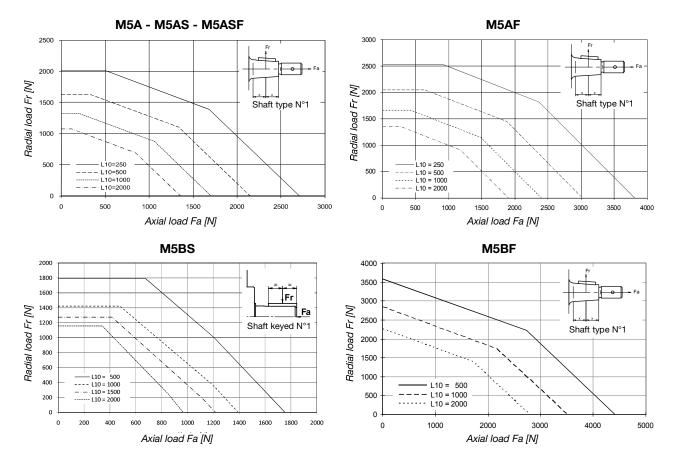
- For higher specifications or for operating speed under < 100 rpm, please consult Parker.




<sup>-</sup> Intermittent conditions : do not exceed 6 seconds per minute of rotation.

### M5A - M5AS - M5ASF - M5AF motors without reverse valve option




### M5B - M5BS - M5BF motors without reverse valve option



### **Starting performances**

| Min starting torque efficiency                         | 100 bar            | 200 bar            | 280 bar            | 300 bar       | 320 bar       |
|--------------------------------------------------------|--------------------|--------------------|--------------------|---------------|---------------|
| M5A - M5AS - M5ASF                                     | 83 %               | 88 %               | 90 %               | NA            | NA            |
| M5AF                                                   | 83 %               | 88 %               | 90 %               | 90 %          | NA            |
| M5B - M5BS - M5BF                                      | 79 %               | 81 %               | 81 %               | 81 %          | 81 %          |
|                                                        |                    |                    | I                  | I             | l             |
| Max. cross-flow at start                               | 100 bar            | 200 bar            | 280 bar            | 300 bar       | 320 bar       |
|                                                        | 100 bar<br>0,6 lpm | 200 bar<br>7,4 lpm | 280 bar<br>8,9 lpm | 300 bar<br>NA | 320 bar<br>NA |
| Max. cross-flow at start<br>M5A - M5AS - M5ASF<br>M5AF |                    |                    |                    |               |               |

### Permissible shaft loads



| Torsional stiffness (Nm/rad) |      |      |      |      |      |      |      |
|------------------------------|------|------|------|------|------|------|------|
| Shaft type                   | 1    | 2    | 3    | 4    | 5    | 6    | W    |
| M5A - M5AS - M5ASF           | 3251 | 4191 | -    | -    | 3184 | 3995 | -    |
| M5AF                         | 3497 | 4530 | -    | -    |      |      | -    |
| M5B - M5BS                   | 6254 | 6822 | 6080 | 6708 | -    | -    | -    |
| M5BF                         | 4965 | 7489 | -    | -    | -    | -    | 7400 |



### Lifetime

Theoretical lifetime [10<sup>6</sup> rev] : L<sub>10</sub>

Example of theoretical lifetime calculation for M5ASF motor :

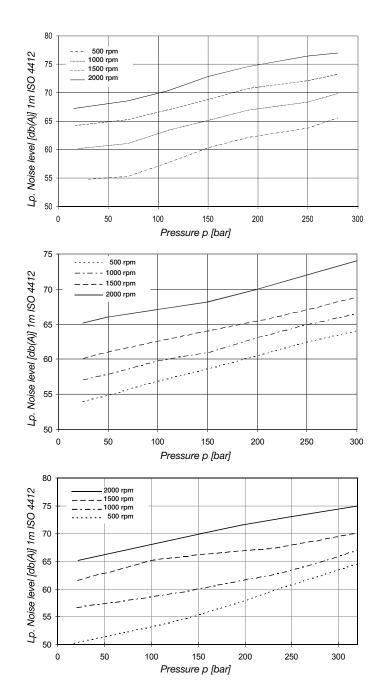
Axial load Fa = 1000 N

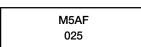
Radial load Fr = 500 N

Motor speed N = 1500 rpm

M5A - M5AS - M5ASF

025

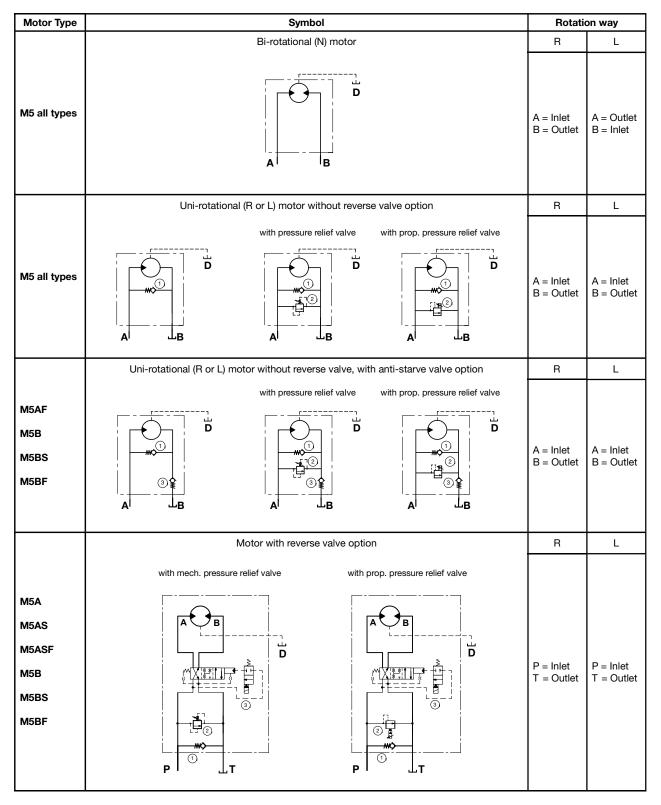

### Noise levels


Theoretical lifetime [Hours] :  $L_{10H} = \frac{16\ 666}{N\ [min^{-1}]} \times L_{10}$ 

 $L10 = 2000 [10^{6} \text{ rev}]$  (See corresponding curve)

 $L_{10H} = \frac{16\ 666}{1500} \times 2000 \qquad \qquad L_{10H} = 2$ 

L<sub>10H</sub> = 22 221 hours.






M5B - M5BS - M5BF 036



### Graphical symbols





### Motor selection example

| Motor performances required | d         |      | Pump available data |    |         |     |
|-----------------------------|-----------|------|---------------------|----|---------|-----|
| Torque                      | _ T [Nm.] | 55   | Flow                | Q  | [l/min] | 30  |
| Speed                       | _n [rpm]  | 1500 | $\Delta$ Pressure   | Δp | [bar]   | 250 |

1. Check if available power is greater than required power (0.85 estimated overall efficiency).

 $0,85 \times \frac{Q \times p}{200} \ge$ Τχπχη 600 30 x 1000

 $10,6 > 8,7 \ kW$ 

2. <u>Two ways of calculation :</u> Calculate V<sub>i</sub> from T required torque, or from Q available flow. 2a. 2b.

$$V_i = \frac{20 \ x \ \pi \ x \ T}{p} = \frac{20 \ x \ \pi \ x \ 55}{250} = 13,8 \ cm^3/rev$$

3a. Choose motor from Vi immediately greater M5AS\* 016 : V<sub>i</sub> = 16,0 cm<sup>3</sup>/rev

4a. Check theoretical motor pressure

$$\Delta p = \frac{20 \, x \, \pi \, x \, T}{V_i} = \frac{20 \, x \, \pi \, x \, 55}{16,0} = 216 \text{ bar}$$

Torque loss at this pressure = 3,0 Nm (See page 17) Calculate real pressure

$$\Delta p_{\text{eff.}} = \frac{20 \, x \, \pi \, x \, (T+T)}{V_i} = \frac{20 \, x \, \pi \, x \, 58}{16,0} = 228 \, \text{bar}$$

5a. Flow loss at this pressure : 3,5 l/min (See page 17) Real flow used by the motor :  $Q_{_{eff}} = 30 - 3,5 = 26,5$  l/min

6a. Real speed of the motor :

$$n_{\rm eff.} = \frac{Q_{\rm eff.} \times 1000}{V_i} = \frac{26,5 \times 1000}{16,0} = 1656 \, \rm rpm$$

Real performances

- $V_i = 16,0 \text{ cm}^3/\text{rev}$ n<sub>eff.</sub> = 1656 rpm Т = 55 Nm.
- $\Delta p_{eff.} = 228 \text{ bar}$

#### Fluid power formulas

| V -   | 1000 x Q _ | _ | $\frac{1000 \times 30}{1000} = 20,0 \text{ cm}^3/\text{rev}$ |  |
|-------|------------|---|--------------------------------------------------------------|--|
| • , - |            |   | 1500                                                         |  |

 $0.85 \times \frac{30 \times 250}{600} \ge \frac{55 \times \pi \times 1500}{30 \times 1000}$ 

3b. Choose motor from Vi immediately smaller M5AS\* 018 : V<sub>i</sub> = 18,0 cm<sup>3</sup>/rev

4b. Check theoretical motor pressure with T = 55 Nm

$$\Delta p = \frac{20 \, x \, \pi \, x \, T}{V_i} = \frac{20 \, x \, \pi \, x \, 55}{18,0} = 192 \, \text{bar}$$

Torque loss at this pressure = 3,3 Nm (See page 17) Calculate real pressure

$$\Delta p_{eff.} = \frac{20 \, x \, \pi \, x \, (T+T)}{V_i} = \frac{20 \, x \, \pi \, x \, 58,3}{18,0} = 204 \, bar$$

5b. Flow loss at this pressure : 4 I/min (See page 17) Real flow used by the motor :  $Q_{eff.} = 30 - 4 = 26,0 \ I/min$ 

6b. Real speed of the motor :

$$n_{\text{eff.}} = \frac{Q_{\text{eff.}} \times 1000}{V_{i.}} = \frac{26,0 \times 1000}{18,0} = 1444 \text{ rpm}$$

Real performances  $V_i = 18,0 \text{ cm}^3/\text{rev}$  $n_{_{eff.}} = 1444 \ rpm$ = 55 Nm. М

 $\Delta p_{eff} = 204 \text{ bar}$ 

| •<br>                 | 1                                                       |    | Speed                          | [rpm]            |
|-----------------------|---------------------------------------------------------|----|--------------------------------|------------------|
| Volumetric efficiency | total leakage x 1000                                    |    | Displacement                   | [cm³/rev]        |
|                       | 1 + speed x displacement                                |    | Pressure<br>Flow rate          | [bar]<br>[I/min] |
| Mechanical efficiency | torque loss x 20 x $\pi$                                |    | Leakage                        | [I/min]          |
| incontained emolency  | $1 - \Delta$ pressure x displacement                    |    | Torque<br>Torque loss          | [Nm]<br>[Nm]     |
| Fluid motor speed     | 1000 x flow rate x volumetric eff.                      |    | Power                          | [kW]             |
|                       | displacement                                            |    |                                |                  |
| Fluid motor torque    | $\Delta$ pressure x displacement x mech. eff.           |    |                                |                  |
|                       | 20 x π                                                  |    |                                |                  |
| Fluid motor power     | speed x displacement x $\Delta$ pressure x overall eff. | or | torque x speed x :             | 20 x π           |
|                       | 600 000                                                 |    | 600 000                        |                  |
|                       | 00                                                      |    | where the second in the second |                  |



### Hydraulic fluids

#### **Recommended fluids**

Petroleum base anti-wear, anti-rust and anti-oxydation fluids (covered by Parker Denison HF-0 and HF-2 specifications). Maximum catalogue ratings and performance data are based on operation with these fluids.

#### Acceptable alternate fluids

The use of fluids other than petroleum base anti-wear R & O fluids requires that the maximum ratings of the motor will be reduced. In some cases, the minimum replenishment pressure must be increased.

| HF-1 : non antiwear petroleum base       | HF-4 : water glycols solutions | HF-5 : synthetic fluids                            |
|------------------------------------------|--------------------------------|----------------------------------------------------|
| HF-1, HF-4, HF-5 : The max. continuous p | ressure is limited to 210 bar  | HF-4, HF-5 : The max. speed is limited to 1800 RPM |

#### Fluids viscosity

The minimum Viscosity Index is 90. The kinematic viscosity range is as below. Over or under these values, please contact Parker.

| Max. (cold start, low speed & pressure | e) 2000 cSt | Min. (full speed & pressure for HF-1, HF-4 & HF-5 fluids) 18 cSt |
|----------------------------------------|-------------|------------------------------------------------------------------|
| Max. (full speed & pressure)           | 108 cSt     | Min. (full speed & pressure for HF-0 & HF-2 fluids) 10 cSt       |
| Optimum (max. lifetime)                | 30 cSt      |                                                                  |

#### Fluids temperatures

The usual limitating factor of temperature (low or high) comes from the obtained viscosity. The seals are sometimes the limit. Maximum fluid temperature (also depends on min. viscosity). Minimum fluid temperature (also depends on max. viscosity).

|                      | 27         |                        | ,    |         |
|----------------------|------------|------------------------|------|---------|
| ٥                    | C°F        |                        | °C   | ° F     |
| HF-0, HF-1, HF-2 + 1 | 00 (+ 212) | HF-0, HF-1, HF-2, HF-5 | 18   | (- 0.4) |
| HF-4 +               | 50 (+ 122) | HF-4                   | + 10 | (+ 50)  |
| HF-5 +               | 70 (+ 158) |                        |      |         |

#### **Filtration requirements**

The fluid must be cleaned before and during operation to maintain a contamination level of ISO 18/16/13 (NAS 1638 class 7) for motors with proportional pressure valve and ISO 19/17/14 (NAS 1638 class 8) or better for others. Filters must be installed accordingly.

#### Water contamination in fluid

The maximum acceptable content of water shall be limited to 0,10 % for mineral base fluids, and 0,05 % for synthetic fluids, crankcase oils, and biodegradable fluids. The eventual excess of water must be drained off the circuit.

### Types of seals

Seals type 1 (S1): Use this seal type for applications with mineral oil and fluid temperature less than + 90° C (+ 194° F).

S1 seals temperature range : - 40°C to + 107° C (- 40° F to + 225° F).

Seals type 5 (S5) : Use this seal type with some fire resistant fluids and/or fluid temperature higher than +90° C (+194° F). S5 seal temperature range : - 29° C to + 204°C (- 20° F to + 400°F).

#### Motor installation

The M5 Motor may be installed in any position providing that its drain line is correctly laid and that the loads on the shaft are clearly identified and acceptable. M5 Motors fitted with valves will require some light back pressure.

The M5A, M5AS, M5ASF, M5AF, M5BF motors are equipped with high load capacity double ball bearings, this allows a direct mounting on shaft (like a fan or a belt for example).

The M5B, M5BS motors are designed primarily for coaxial drives which do not impose axial or radial loads on the motor shaft.

The M5 externally drained motors must have a drain line connected to their housing drain port. It must be of a sufficient size to prevent back pressure in excess of 3,5 bar (50 PSI), and return directly to the reservoir below the minimum fluid level, as far away as possible from the suction pipe of the pump.

It is preferable to install the housing with its drain port upward to facilitate the purge of the motor. If the motor is mounted vertically with the shaft pointing up, then the drain line must have a bend above the motor to purge it fully and to be sure that the shaft seal is well lubricated.





Parker Hannifin Manufacturing France SAS VPDE. Denison Vane Motors Vierzon - France

systems (i.e. fan drive).

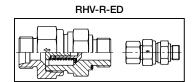
An anti-starve check (loading) valve can be screwed directly onto the B port of the uni-rotational motors, to ensure the minimum

replenishment pressure during deceleration phases of high inertia

### Minimum replenishment pressure during deceleration

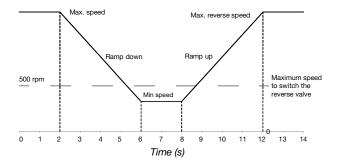
The hydraulic circuit should be designed in a way that when switching off the hydraulic motor, it remains supplied with fluid, without risk of cavitation (anti-cavitation valve may be needed).

Uni-rotational M5AS\* Motors are fitted with an internal anti-cavitation valve.


Necessary pressure at B port of a

M5 uni-rotational motor during deceleration 7 6 [bar] D 5 Pression relative p 4 3 2 1 B Α 0 0 20 40 60 80 100 Q [l/min]

External anti-starve (loading) valve to be installed directly at motor outlet port.


For an optimum flow recirculation, use loading valves that can be directly threaded in the return port of the motor. Parker can offer these check valves with various cracking pressures, threads, sealing and connection standards.

RHV-R-ED valves for BSPP threaded ports. See Parker Tube Fitting Catalogue 4100- UK RHV-M-ED valves for Metric threaded ports. See Parker Tube Fitting Catalogue 4100- UK DT- MOMF valves for SAE threaded ports. See Parker Quick Coupling Catalog 3800



### **Reverse cycles for fan drives**

The rotation way R or L of motors with reverse option is denoting the normal cooling function for which the solenoid of the directional control valve is not energised. To reverse the rotation way from cooling to cleaning, the solenoid of the directional control valve has to be energised.

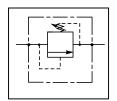


The motor must be decelerated from its (max.) rotation speed to less than 500 rpm in no less than 4 seconds time before energizing the solenoid of the reverse valve.

In the same way the motor must be ramped up to its (max.) reverse rotation speed in no less than 4 seconds time.

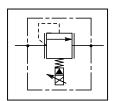
There should be no signs of cavitation during the reverse cycle (abnormal noise or lack of replenishment pressure).

### Connection of several motors in the same circuit.


For application requiring several M5 motors to be driven simultaneously, we recommend to connect these in parallel circuits.

The use of several M5 motors connected in series is not recommended. Depending on the different inertia of the loads, the displacements and torque requirements, the motors may be subjected to pressure instability and noise. Also hydraulic pressure valves will not admit high levels of back pressure, restricting this use to motors without pressure valves. Please consult Parker.

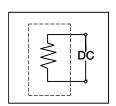



### **Electrohydraulic valves**

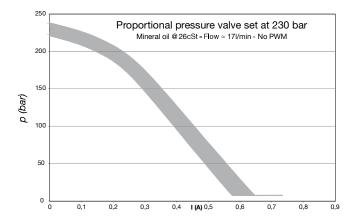
#### Mechanical pressure valve



Parker RAH101S, pilot operated spool-type design with hexa screw adjustement. For pressure adjustment < 210 bar Parker RAH101S30 For pressure adjustment > 210 bar Parker RAH101S50 For more information see Parker Catalog HY 15-3502/US


#### Proportional pressure valve



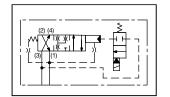

Parker AP04G2YR serie, pilot operated spool-type design. Decreasing pressure with increasing current, this normally closed pressure relief valve defaults to its mechanically adjusted pressure setting value when no current is applied to its coil.

IP69K Integral TE Deutsch coil : 24VDC / 19W / 0,79 A / 30,3 Ohms.

(IP67 AMPJr coil available as special feature, consult Parker).



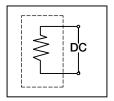
| Coil type                                                   | CCP024H                    |
|-------------------------------------------------------------|----------------------------|
| Nominal wattage                                             | 19 W                       |
| Duty cycle                                                  | Continuous @ 100 % voltage |
| Magnetic wire insulation class                              | 'N' Rated at 200° C        |
| Temperature range                                           | - 40° C to + 200° C        |
| Temperature rise at nominal voltage and natural ventilation | P 95° C                    |




Recommended PWM Frequency : 250 Hz min.

Hysteresis @ 250 Hz PWM ≤ 7% of max. pressure setting




#### **Reverse valve**



Parker 4 way, 2 position directional control valve. Pilot operated spool type valve.

Additional flow data for motors with reverse valve option. Motor in normal rotation way : Additional leakage = 0,5 lpm @ 210 bar with 26 cSt fluid. Motor in reverse rotation way : Additional leakage = 3 lpm @ 210 bar with 26 cSt fluid.

IP69K Integral TE Deutsch coil : 24VDC / 14W / 0,58 A / 41,7 Ohms. (IP67 AMPJr coil available as special feature, consult Parker).



| Coil type                                                   | CCS024HSZN                 |
|-------------------------------------------------------------|----------------------------|
| Nominal wattage                                             | 14 W                       |
| Duty cycle                                                  | Continuous @ 100 % voltage |
| Magnetic wire insulation class                              | 'N' Rated at 200° C        |
| Temperature range                                           | - 40° C to + 200° C        |
| Temperature rise at nominal voltage and natural ventilation | S 75° C                    |

### Start-up instructions

All Parker hydraulic vane motors are individually factory tested to provide the best quality & reliability. They are to be used within the design limits indicated in our documentation. Only qualified personnel who is competent and familiar with the installation and operation of hydraulic drives and has hydraulic circuits and hydraulic equipment knowledge is allowed to put the equipment into operation. Make sure to have all necessary documentation available and always conform yourself to the valid regulations (safety, electrical, environment...).

#### Pre-start checks

- Before the initial installation of the motor, please remove the protective covers or plugs from the connection ports and pour some clean and suitable hydraulic fluids in all ports.

- Before the initial starting of the motor, the following checks should be made :

- a. Check the requested rotation way of the driven device and make sure that the hydraulic motor shaft will rotate accordingly.
- b. Check entry, outlet and drain lines to be sure all connections are tight and properly connected.
- c. Check the cleanliness of the piping, the hydraulic fluid type, its cleanliness and level. Make sure it can reach the motor entry port.
- d. Check the correct fixture of the hydraulic motor mounting flange and of its driven device. Check their correct coupling.
- e. For hydraulic motors with built-in solenoid valves, check the electrical wiring and the connections.

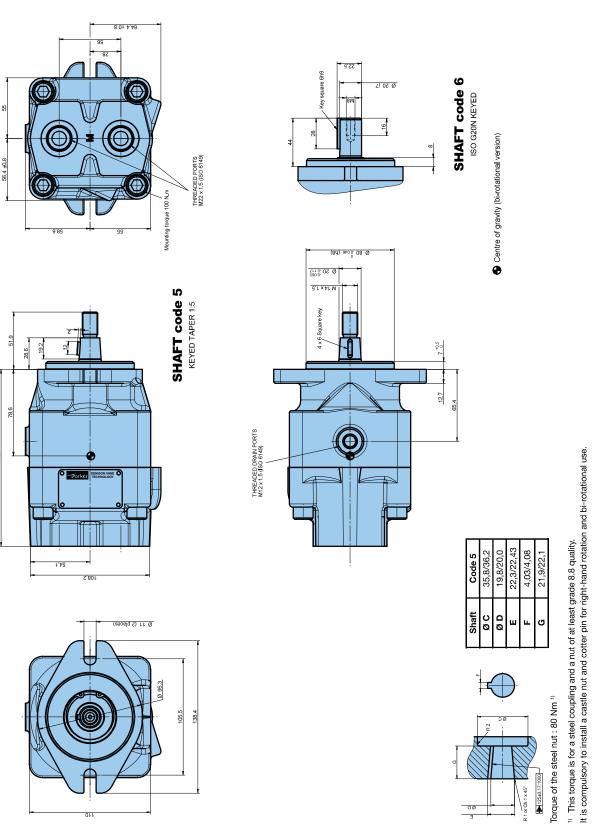
#### First start and air removing

- The pressure relief valve of the circuit should be backed off to its minimum setting value to keep the hydraulic motor unloaded when first started. Circuit priming and air bleed off have to be performed before resetting the pressure relief valve.

- Start the hydraulic motor rotation in a jogging manner until a prime is picked up, and increase its speed from 500 to 1000 rpm. Check that there is no leakage or air suction neither at the ports (inlet, outlet, drain), nor at the shaft end.

- It is important to bleed the air off the circuit, and off the hydraulic motor itself. Purge the air off, preferably using air bleed off valves or pressure test points. Let the hydraulic motor rotate several minutes unloaded.

- Hydraulic motors equipped with a built-in proportional pressure relief valve have to purge the air off the pressure valve in the following way: energize and de-energize the coil 5 times from 0 Amp to max current. Check that the proportional pressure relief valve is properly air bled off by running the hydraulic motor at full speed. It should rotate without vibrations or pulses.

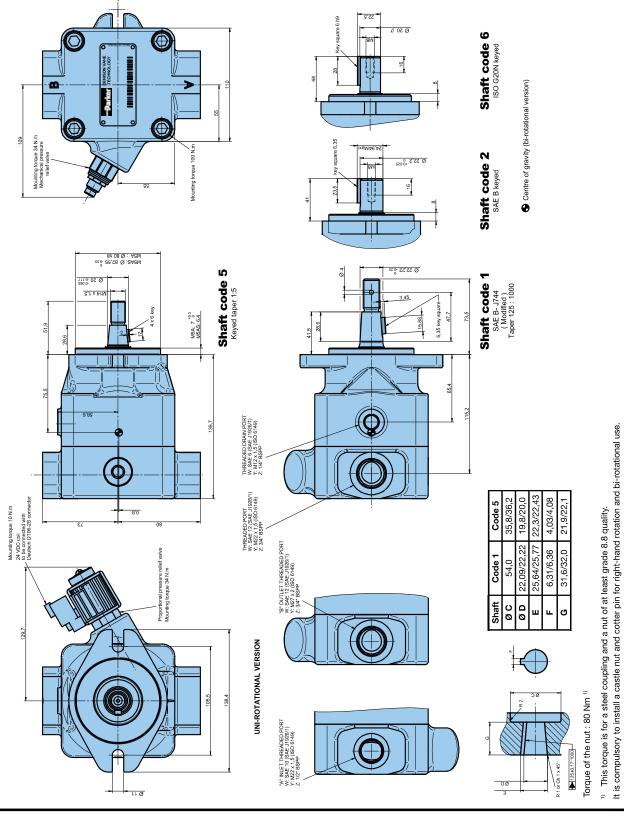

#### Notes

- In case of very cold temperature, the hydraulic motor should be kept at low pressure and low speed until the fluid warms up, before running it at high pressure or speed.

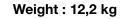
- If the motor does not work properly or pressure cannot be obtained within seconds, it should be shut down and conditions corrected. Refer to the machine/vehicle manufacturer instructions and motor catalogue.

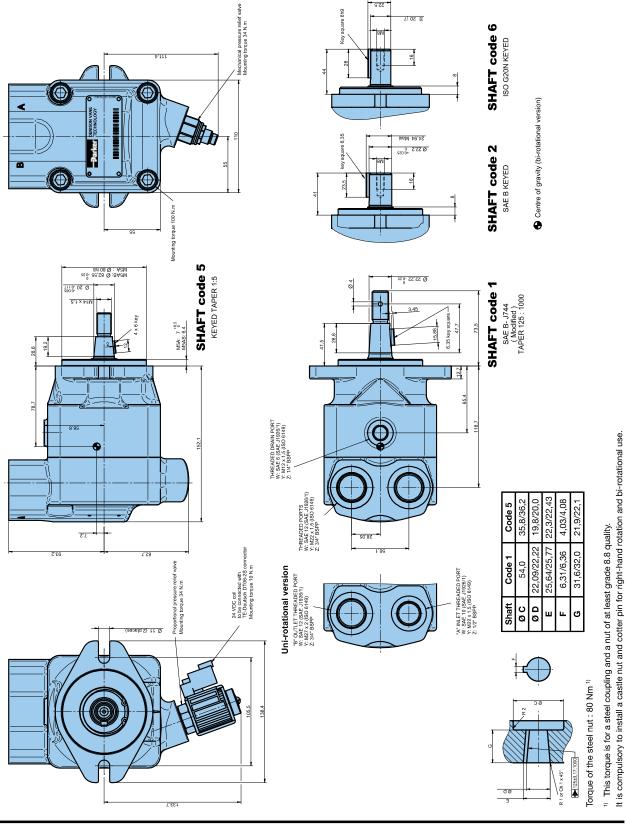


### M5A - M5AS motor with rear ports



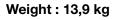




160,6


### M5A - M5AS motor with opposite ports

### Weight: 11,2 kg

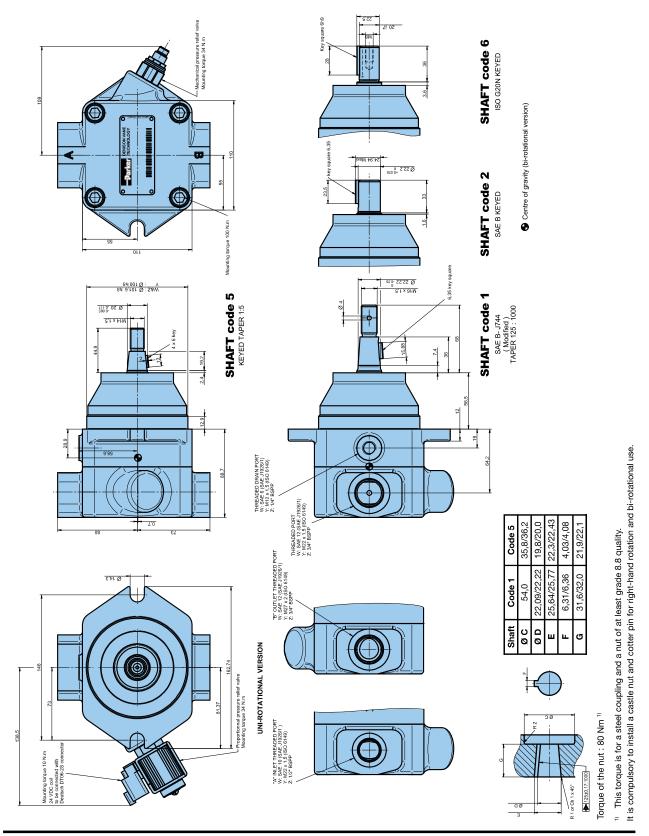



### M5A - M5AS motor with side ports

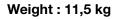




#### square 6h9 Shaft code 6 ISO G20N keyed 07 07 0 Centre of gravity (bi-rotational version) $\odot$ $\oplus$ . 16 . essure relief valve-unting torque 34 h l 0 $\oplus$ $\bigcirc$ square 6.35 x6M 49,45 Shaft code 2 SAE B keyed Q 55'5 0 +0'052 00 N.F 16 Mounting torque Ø 22,2 -0.25 800- 32,28 & :2A3M 84 08 & : A3M Shaft code 1 SAE B- J744 (Modified) Taper 125 : 1000 Shaft code 5 Keyed taper 1:5 Ø 50 -0.065 9.1 × 41 M x 6 key M5A: 7 0 M5AS: 6.4 .35 kev 19.2 28,6 12.7 THREADED DRAIN PORTS: W: SAE 6 (SAE J1926/1) Y: M12 × 1,5 (ISO 6149) Z: 114" BSPP 85.4 123,1 43,1 -Parker <sup>1)</sup> This torque is for a steel coupling and a nut of at least grade 8.8 quality. It is compulsory to install a castle nut and cotter pin for right-hand rotation and bi-rotational use. SON VANI 0011) (000 0011) 000111 -la-"A" INLET THREADED PORT W: SAE 10 (SAE J1926/1) Y: M22 × 1,5 (ISO 6149) Z: 1/2" BSPP "B" OUTLET THREADED PORT W: SAE 12 (SAE J1926/1) Y: M27 x 2 (ISO 6149) Z: 3/4" BSPP m N 0 Proportional pressure relief valve Mounting torque 34 N.m 24 VDC to be cor Deutsch 129,1 . 1 43 4,03/4,08 Torque of the steel nut : 80 Nm $^{ m 1)}$ 19 8/20 Code 24 VDC col to be connect. Deutsch DT06 Mounting torqu 105,5 5 ۲ 138.4 6,31/6,36 Code 1 22,09/22, 6/32 64/25 Ň 5 125±0,17:1000 1 or Ch 1 x 45° Shaft 0 Ø с Ø 6,611 ш щ Ċ (seceld 2) 2,11 Q


### M5A - M5AS motor with reverse valve option



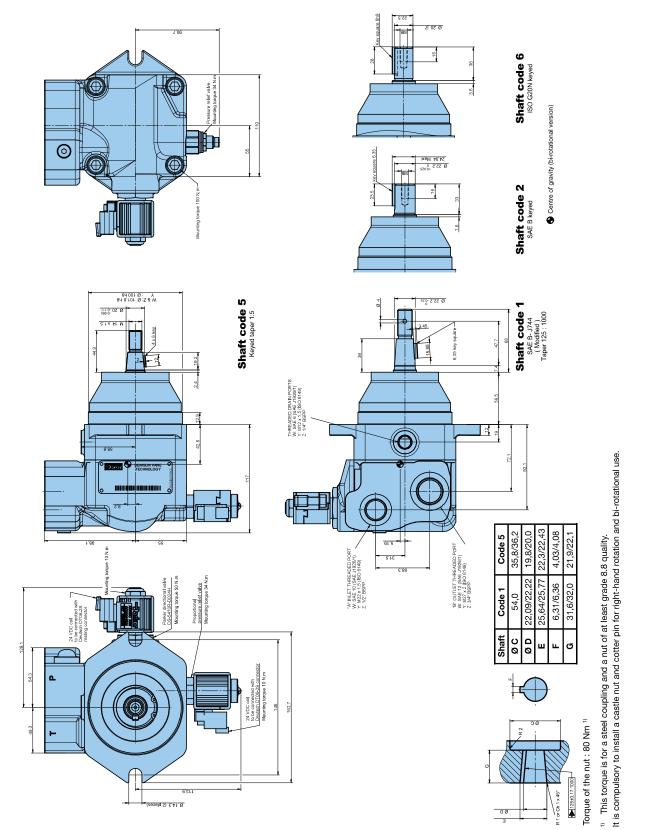




### M5ASF motor with opposite ports

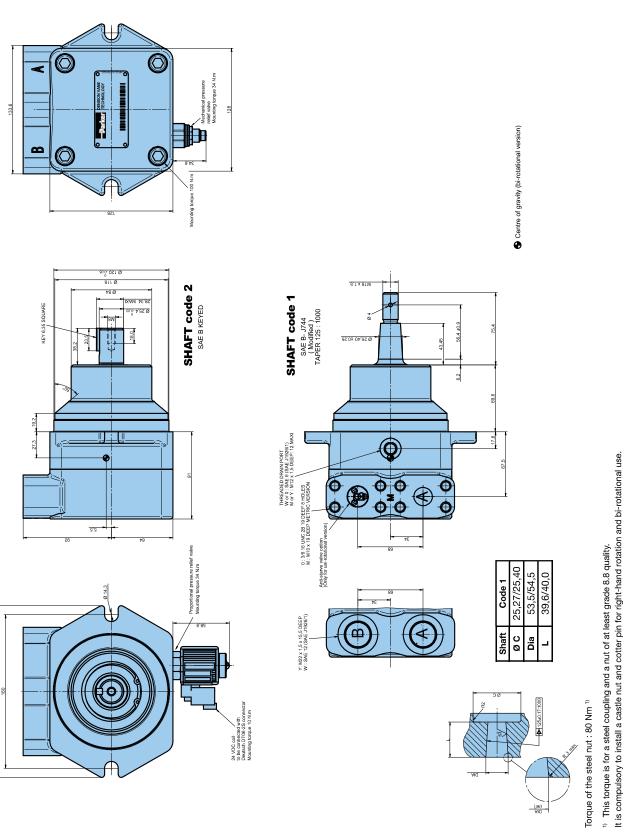
### Weight: 10,5 kg




### M5ASF motor with side ports








M5ASF motor with reverse valve option

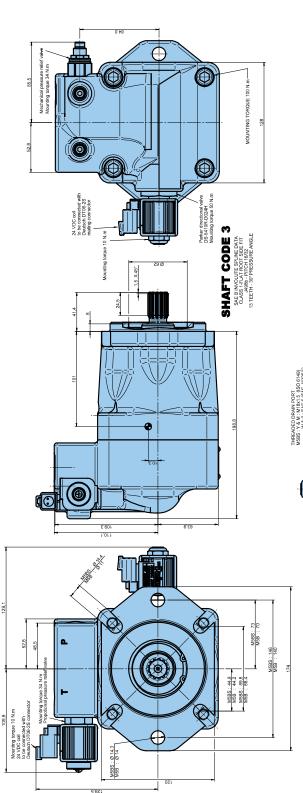


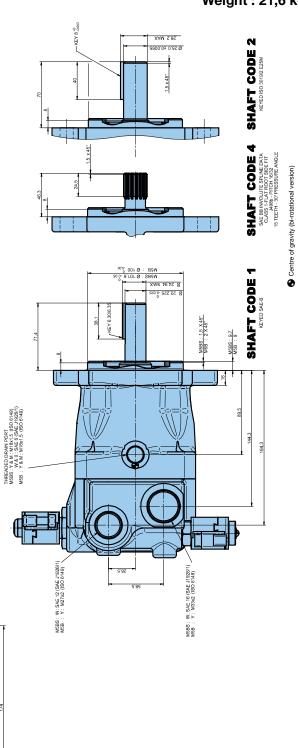
אחוגפו

Weight : 13,2 kg



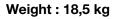


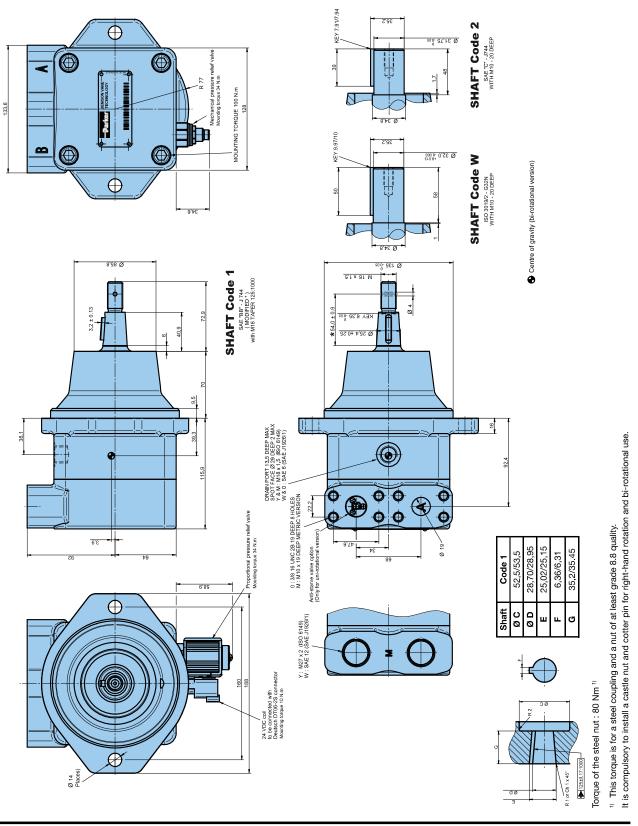

178.8


#### Weight : 18,5 kg M5B - M5BS motor XAM 5,85 KEY 8<sup>+0</sup> SHAFT CODE 2 KEYED ISO 3019/2 EZEM Q 52'0 ∓0'008 FOROUE 100 N.m. $\oplus$ $\bigcirc$ alve $\bigcirc$ MOUNTING fechanical pressure relief founting torque 34 N.m SHAFT CODE 4 SAEBINOUTE SPINE DATA CLASS FICAT ROOT JABA- FICH FACT JABA- FICH FACT 15 TETH - 30" PRESURE ANGLE Centre of gravity (bi-rotational version) 1.5 x 45° Parker ∞ $\bigcirc$ 24.5 $( \bigcirc$ Œ <sup>000-</sup>001⊗: 89W eo.o- 0,101 Q : 282M EY 6.30/6.35 SHAFT CODE 3 XAM 49,45 SHAFT CODE 1 SAE B INVOLUTE SPLINE DATA CLASS 1-FLAT ROOT SIDE FIT J498b - PITCH 16/32 13 TEETH - 30° PRESSURE ANGLE 20.0- 855,25 ( 1.5 x 45° KEYED SAE-B 38.1 M5BS: 1.5 x 45 M5B : 2 x 45° M5BS : 9.7 M5B : 9 24.5 φ Ψ 28 43,8 • THREADED DRAIN PORT MSBS : Y & M : M18 × 1.5 (ISO 6149) W & 0 : SAE 6 (SAE J1926/1) MSB : Y & M : M18 × 1.5 (ISO 6149) Ø Ø (Þ 0: 3/8 16 UNC 2B 19 DEEP 8 HOLES M: M10 x 19 DEEP METRIC VERSION Φ Φ 6'8 Anti-starve valve option (Only for uni-rotational v 1/88 : 89W MSBS: 44.2 1 M5BS : W: SAE 12 (SAE J1926/1) Y : M27 x 2 (ISO 6149) Ø Ø M5BS: 73 M5B : 70 M5BS: 146 M5B : 140 Proportional pressure relief v Mounting torque 34 N.m 24 VDC coil to be connected with Deutsch DT06-2S connector Mounting torque 10 N.m Ċ $\odot$ M5BS: Ø 14.3 M5B : Ø 14 150



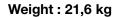
### M5B - M5BS motor with reverse valve option

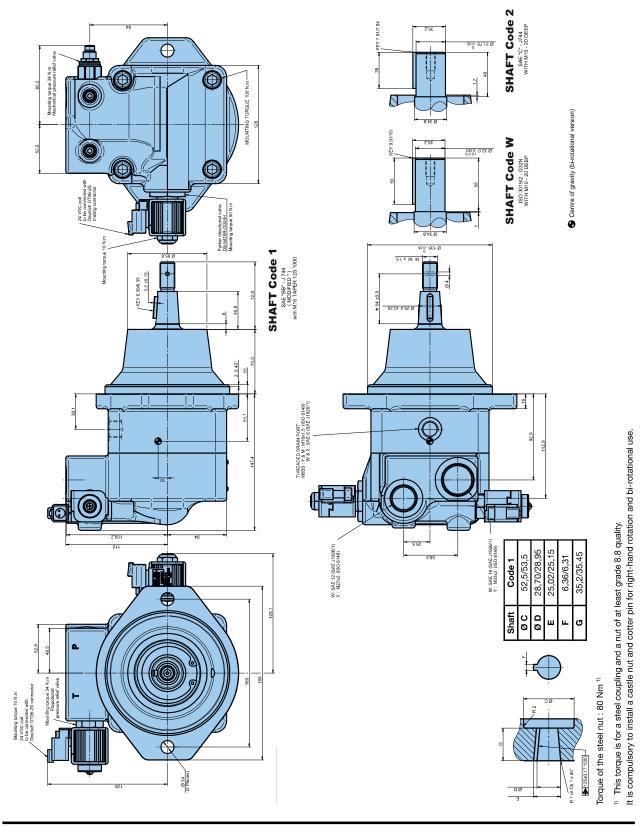

### Weight : 21,6 kg









### M5BF motor








### M5BF motor with reverse valve option









FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

- The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

## **Offer of Sale**

Please contact your Parker representation for a detailed "Offer of Sale".



# Parker Worldwide

#### Europe, Middle East, Africa

**AE – United Arab Emirates,** Dubai Tel: +971 4 8127100 parker.me@parker.com

**AT – Austria,** Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

**AT – Eastern Europe,** Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

**AZ – Azerbaijan,** Baku Tel: +994 50 22 33 458 parker.azerbaijan@parker.com

**BE/LU – Belgium,** Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

**BG - Bulgaria,** Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

**BY – Belarus,** Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

**CH – Switzerland,** Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

**CZ – Czech Republic,** Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

**DE – Germany,** Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

**DK – Denmark,** Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

**ES - Spain,** Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI – Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

**GR – Greece,** Athens Tel: +30 210 933 6450 parker.greece@parker.com **HU – Hungary,** Budaoers Tel: +36 23 885 470 parker.hungary@parker.com

**IE – Ireland,** Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

**KZ – Kazakhstan,** Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

**NO – Norway,** Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

**PT – Portugal** Tel: +351 22 999 7360 parker.portugal@parker.com

**RO – Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

**RU – Russia,** Moscow Tel: +7 495 645-2156 parker.russia@parker.com

**SE – Sweden,** Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

**SK – Slovakia**, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

**TR – Turkey,** Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

**UA – Ukraine,** Kiev Tel: +48 (0)22 573 24 00 parker.poland@parker.com

**UK – United Kingdom,** Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

**ZA – South Africa,** Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

#### **North America**

**CA – Canada,** Milton, Ontario Tel: +1 905 693 3000

**US – USA,** Cleveland (industrial) Tel: +1 216 896 3000

**US – USA**, Elk Grove Village (mobile) Tel: +1 847 258 6200

#### **Asia Pacific**

**AU – Australia,** Castle Hill Tel: +61 (0)2-9634 7777

**CN – China,** Shanghai Tel: +86 21 2899 5000

**HK – Hong Kong** Tel: +852 2428 8008

**ID – Indonesia,** Tangerang Tel: +62 21 7588 1906

**IN – India,** Mumbai Tel: +91 22 6513 7081-85

**JP – Japan,** Fujisawa Tel: +81 (0)4 6635 3050

**KR – South Korea,** Seoul Tel: +82 2 559 0400

**MY – Malaysia,** Shah Alam Tel: +60 3 7849 0800

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

**SG – Singapore** Tel: +65 6887 6300

**TH – Thailand,** Bangkok Tel: +662 186 7000

**TW – Taiwan,** New Taipei City Tel: +886 2 2298 8987

**VN – Vietnam,** Ho Chi Minh City Tel: +84 8 3999 1600

#### **South America**

**AR – Argentina,** Buenos Aires Tel: +54 3327 44 4129

**BR – Brazil,** Cachoeirinha RS Tel: +55 51 3470 9144

**CL – Chile,** Santiago Tel: +56 2 623 1216

**MX – Mexico,** Toluca Tel: +52 72 2275 4200

Ed. 2016-04-04

© 2016 Parker Hannifin Corporation. All rights reserved.



**EMEA Product Information Centre Free phone: 00 800 27 27 5374** (from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

US Product Information Centre Toll-free number: 1-800-27 27 537 www.parker.com

Your local authorized Parker distributor

Catalogue HY29-0128/UK. 09/2016